Proceedings of the 19th International Ship and Offshore Structures Congress

Editors

C. Guedes Soares & Y. Garbatov

Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

VOLUME 1

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A BALKEMA BOOK

CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business

© 2015 Taylor & Francis Group, London, UK

Typeset by MPS Limited, Chennai, India Printed and bound in Great Britain by CPI Group (UK) Ltd, Croydon, CR0 4YY

All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the publishers.

Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers nor the author for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein.

Published by:	CRC Press/Balkema
	P.O. Box 11320, 2301 EH Leiden, The Netherlands
	e-mail: Pub.NL@taylorandfrancis.com
	www.crcpress.com-www.taylorandfrancis.com
ISBN set: 978-1	-138-02895-1 (2 volumes hardback and CDROM)
ISBN Volume 1:	: 978-1-138-02896-8
ISBN Volume 2:	: 978-1-138-02897-5
ISBN: 978-1-31	5-64719-7 (eBook PDF)

Table of contents

Preface

VOLUME 1

Re	port o	f Comm	iittee I.1: Environment	1
1	Introd	luction		4
2	Envir	onmental	data	5
	2.1	Wind		6
		2.1.1	Locally sensed wind measurements	6
		2.1.2	Remotely sensed wind measurements	7
		2.1.3	Numerical modelling to complement measured data	8
	2.2	Waves	5	8
		2.2.1	Locally sensed wave measurements	9
		2.2.2	Remotely sensed wave measurements	12
		2.2.3	Numerical modelling to complement measured data	13
		2.2.4	Wave description from measured ship motions	14
	2.3	Currer	nt	14
		2.3.1	In-situ current measurements	14
		2.3.2	Remotely sensed current measurements	15
		2.3.3	Numerical modelling to complement measured data	15
	2.4	Sea wa	ater level	15
		2.4.1	Locally sensed sea water level measurements	15
		2.4.2	Remotely sensed sea water level measurements	15
		2.4.3	Numerical modelling to complement measured data	15
	2.5	Ice and	d snow	15
		2.5.1	Locally and remotely sensed ice and snow measurements	15
		2.5.2	Numerical modelling to complement measured data	16
3	Environmental models			
	3.1	Wind		17
		3.1.1	Analytical description of wind	18
		3.1.2	Statistical and spectral description of wind	18
	3.2	Waves	5	20
		3.2.1	Analytical and numerical wave models	20
		3.2.2	Experimental description of waves	28
		3.2.3	Statistical description of waves	30
		3.2.4	Spectral description of waves	32
	3.3	Curren	nt	33
		3.3.1	Analytical description of current	33
		3.3.2	Statistical and spectral description of current	34
	3.4	Sea wa	ater level	34
	3.5	Ice and	d snow	34
4	Clima	te change	e	34
	4.1	New I	PPC scenarios and climate models	35
		4.1.1	Temperature	36
		4.1.2	Ice and snow	37
		4.1.3	Sea water level	38

		4.1.4	Wind and waves	38
		4.1.5	Ocean circulation	40
5	Special	topics		40
	5.1	Hurric	ane	40
	5.2	Wave	current interaction	41
		5.2.1	Wave-current interaction model	41
		5.2.2	Numerical and analytical method	43
		5.2.3	Experiments and measurements	44
	5.3	Wave a	and wind energy resource assessment	45
6	Design	and ope	erational environment	47
	6.1	Design	1	47
		6.1.1	Met-Ocean data	47
		6.1.2	Design environment	48
		6.1.3	Design for climate change and rogue waves	51
	6.2	Operat	tions	52
		6.2.1	Planning and executing marine operations	53
		6.2.2	Northern sea route, weather routing, warning criteria and current	54
		6.2.3	Eco-efficiency ship operation	56
7	Conclu	sions		57
	7.1	Advan	ces	59
	7.2	Recon	nmendations	60
Ack	nowledg	gements		60
Refe	erences			61
Rep			ittee I.2: Loads	73
1	Introdu			75
2	Compu	tation o	f wave-induced loads	75
	2.1	Zero s	peed case	75
		2.1.1		75
		2.1.2	Body-wave-current interactions	79
		2.1.3	Multibody interactions	79
	2.2	Forwa	rd speed case	80
	2.3	Hydro	elasticity methods	83
	2.4		from abnormal waves	85
3	Ship st	ructures	- specialist topics	87
	3.1	Slamn	ning and whipping	87
	3.2	Sloshi	ng	91
		3.2.1	Analytical methods	91
		3.2.2	Experimental investigations	92
		3.2.3	Numerical simulation	93
		3.2.4	Sloshing with internal suppressing structures	94
		3.2.5	Sloshing and ship motions	95
	3.3	Green	water	96
	3.4		mental and full scale measurements	99
	3.5	Loads	due to damage following collision/grounding	101
	3.6	Weath	er routing and operational guidance	102
4	Offsho	re struct	tures specialist topics	104
	4.1	Vortex	-induced vibrations (VIV) and vortex-induced motions (VIM)	104
		4.1.1	VIV	104
		4.1.2	VIM	106
	4.2	Moori	ng systems	108
	4.3	Lifting	goperations	111

Table of contents

	4.4	Wave-i	in-deck loads	113
	4.5		ng offshore wind turbines	113
5	Probab	ilistic m	odelling of loads on ships	115
	5.1	Probab	pilistic methods	115
	5.2	1	llent design waves	117
	5.3		n load cases and ultimate strength	119
6		e loads fo		120
7	Uncert	ainty ana	alysis	123
	7.1		incertainties	123
	7.2	Uncert	ainties in loading conditions	124
8	Conclu	sions		125
Ref	erences			128
Rei	port of	Comm	ittee II.1: Quasi-static response	141
1	Introdu			144
2	Strengt	h assess	ment approaches	144
	2.1		ling of loads by quasi-static analysis	144
	2.2		nse calculation	146
	2.3	Reliabi		147
3			ocedures	148
	3.1	-	omy of engineering assessment methods	148
		3.1.1	Simplified analysis (rule-based design) / first principles	148
		3.1.2	Direct calculations	148
		3.1.3	Reliability analyses	148
		3.1.4	Optimisation-based analyses	149
	3.2		n for production loads modelling	149
		3.2.1		149
		3.2.2	1 8	149
		3.2.3		151
		3.2.4	Loads from seakeeping codes	152
	3.3	Structu	and modelling	152
		3.3.1	Finite element modelling	152
		3.3.2	Models for global and detailed analyses	152
		3.3.3	Composite structures	153
	3.4		iral response assessment	153
		3.4.1	Buckling and ultimate strength	153
		3.4.2	Fatigue strength	154
		3.4.3	Ship dynamics – vibrations	155
	3.5	Validat	tion of calculation results	155
		3.5.1	Model scale experiments and testing	156
		3.5.2	Full scale hull stress monitoring	160
4	Uncert		ssociated with reliability-based quasi-static response assessment	161
	4.1		ainties associated with loads	161
		4.1.1	Still water and wave loads	161
		4.1.2	Ice loads	162
		4.1.3	Combination factors	162
	4.2		ainties in structural modelling	163
		4.2.1	Corrosion	163
		4.2.2	Structural characteristics	164
		4.2.3	Reliability and risk-based structural assessment	165
		4.2.4	Methods and criteria	165
		4.2.5	Structural capacity	166
				200

vii

	4.3		ased inspection, maintenance and repair	167
		4.3.1	Inspection	167
		4.3.2	Maintenance and repair	168
5	-	ructures		169
	5.1		pments in international rules and regulations	169
		5.1.1	IMO goal-based standards	169
		5.1.2	IACS common structural rules for bulk carriers and oil tankers	170
		5.1.3	Development of structural design software systems	172
	5.2	-	l ship concepts	173
		5.2.1	1	173
		5.2.2		173
		5.2.3		174
		5.2.4	Other ship types	175
6		re structi		176
	6.1		of analysis for various floating offshore structures	176
	6.2		of analysis for various fixed offshore structures	179
	6.3		ainty, risk and reliability in offshore structural analysis	182
7		nark stud		184
	7.1	Method		184
	7.2		fied methods	186
	7.3	~	static linear FE analysis	188
	7.4		ear, transient dynamic FE analysis	188
~	7.5		ding remarks	190
8		isions and	d recommendations	191
Ref	erences			192
Rej			ittee II.2: Dynamic response	209
1	Introdu	iction	ittee II.2: Dynamic response	211
	Introdu	ction ructures		
1	Introdu	iction ructures Enviror	nmental-induced vibrations	211 211 211
1	Introdu Ship st	ction ructures	nmental-induced vibrations Wave-induced vibration	211 211 211 211
1	Introdu Ship st 2.1	uction ructures Enviror 2.1.1 2.1.2	nmental-induced vibrations Wave-induced vibration Ice-induced vibration	211 211 211 211 211 219
1	Introdu Ship st	ection ructures Enviror 2.1.1 2.1.2 Machin	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations	211 211 211 211 219 220
1	Introdu Ship st 2.1	ection ructures Enviror 2.1.1 2.1.2 Machin 2.2.1	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration	211 211 211 211 219 220 220
1	Introdu Ship st 2.1	Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration	211 211 211 211 219 220 220 220
1	Introdu Ship st 2.1 2.2	action ructures Enviror 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration	211 211 211 219 220 220 220 220 221
1	Introdu Ship st 2.1	action ructures Enviror 2.1.1 2.1.2 Machim 2.2.1 2.2.2 2.2.3 Noise	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures	211 211 211 219 220 220 220 220 221 221
1	Introdu Ship st 2.1 2.2	ection ructures Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise	211 211 211 219 220 220 220 221 222 222
1	Introdu Ship st 2.1 2.2	action ructures Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise	211 211 211 219 220 220 220 221 222 222 222 224
1	Introdu Ship st 2.1 2.2 2.3	action ructures Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise	211 211 211 219 220 220 220 221 222 222 222 224 224
1	Introdu Ship st 2.1 2.2	action ructures Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise ng impact	211 211 211 219 220 220 220 221 222 222 222 224 224 224 227
1	Introdu Ship st 2.1 2.2 2.3	action ructures Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise hg impact Experimental approaches	211 211 211 219 220 220 220 221 222 222 222 224 224 224 227 227
1	Introdu Ship st 2.1 2.2 2.3	action ructures Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1 2.4.2	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise inpact Experimental approaches Numerical modelling	211 211 211 219 220 220 220 220 220 221 222 222 224 224 224 224 227 227 228
1	Introdu Ship st 2.1 2.2 2.3	action ructures Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1 2.4.2 2.4.3	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise ing impact Experimental approaches Numerical modelling CCS structural response	211 211 211 219 220 220 220 220 220 221 222 222 224 224 224 224 227 227 228 229
1	Introdu Ship st 2.1 2.2 2.3 2.4	action ructures Enviror 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1 2.4.2 2.4.3 2.4.4	nmental-induced vibrations Wave-induced vibration Ice-induced vibration nery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise ag impact Experimental approaches Numerical modelling CCS structural response Current approaches for sloshing assessment	211 211 211 219 220 220 220 220 220 221 222 222 224 224 224 224 227 227 227 228 229 229
1	Introdu Ship st 2.1 2.2 2.3	action ructures Enviror 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1 2.4.2 2.4.3 2.4.4 Air blas	nmental-induced vibrations Wave-induced vibration Ice-induced vibration nery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise ng impact Experimental approaches Numerical modelling CCS structural response Current approaches for sloshing assessment st and underwater explosion	211 211 211 219 220 220 220 220 220 221 222 222 222 224 224 224 224 227 227 227
1	Introdu Ship st 2.1 2.2 2.3 2.4	action ructures Enviror 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1 2.4.2 2.4.3 2.4.4 Air blas 2.5.1	nmental-induced vibrations Wave-induced vibration Ice-induced vibration nery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise ng impact Experimental approaches Numerical modelling CCS structural response Current approaches for sloshing assessment st and underwater explosion Air blast	211 211 211 219 220 220 220 220 220 221 222 222 222 224 224 224 227 227 227 228 229 229 229 229
1	Introdu Ship st 2.1 2.2 2.3 2.4 2.5	action ructures Enviror 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1 2.4.2 2.4.3 2.4.4 Air blas 2.5.1 2.5.2	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise hg impact Experimental approaches Numerical modelling CCS structural response Current approaches for sloshing assessment st and underwater explosion Air blast Underwater explosion	211 211 211 219 220 220 220 220 220 221 222 222 222 224 224 224 227 227 227 228 229 229 229 229 229 230
1	Introdu Ship st 2.1 2.2 2.3 2.4 2.5 2.6	tetion ructures Environ 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1 2.4.2 2.4.3 2.4.4 Air blas 2.5.1 2.5.2 Dampin	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise ge impact Experimental approaches Numerical modelling CCS structural response Current approaches for sloshing assessment st and underwater explosion Air blast Underwater explosion ng and countermeasures	211 211 211 219 220 220 220 220 221 222 222 222 224 224 224 224 227 227 228 229 229 229 229 229 230 230
1	Introdu Ship st 2.1 2.2 2.3 2.4 2.5	action ructures Enviror 2.1.1 2.1.2 Machin 2.2.1 2.2.2 2.2.3 Noise 2.3.1 2.3.2 2.3.3 Sloshin 2.4.1 2.4.2 2.4.3 2.4.4 Air blas 2.5.1 2.5.2	nmental-induced vibrations Wave-induced vibration Ice-induced vibration hery or propeller-induced vibrations Propeller-induced vibration Machinery-induced vibration Numerical and analytical vibration studies of ship structures Interior noise Air radiated noise Underwater radiated noise ge impact Experimental approaches Numerical modelling CCS structural response Current approaches for sloshing assessment st and underwater explosion Air blast Underwater explosion ng and countermeasures	211 211 211 219 220 220 220 220 220 221 222 222 222 224 224 224 227 227 227 228 229 229 229 229 229 230

		2.7.2 New sensors technology and application	234		
		2.7.3 New full scale monitoring campaigns and related studies	236		
	2.8	Uncertainties	239		
	2.9	Standards and acceptance criteria	241		
		2.9.1 Habitability	241		
		2.9.2 Underwater noise	242		
		2.9.3 Others	242		
3	Offsh	nore structures	243		
	3.1	Vibration	243		
		3.1.1 Wind-induced vibration	243		
		3.1.2 Wave-induced vibration	244		
		3.1.3 Vortex-induced motion	245		
		3.1.4 Internal flow-induced vibration	246		
		3.1.5 Ice-induced vibration	246		
	3.2	Very large floating structures	249		
	3.3	Noise	249		
		3.3.1 Analysis of underwater noise by pile-driving	250		
		3.3.2 Measurement and mitigation of underwater noise	250		
		3.3.3 Equipment noise	250		
	3.4	Blast	251		
	3.5	Damping and countermeasures	252 253		
		3.6 Uncertainties			
	3.7	Standards and acceptance criteria	254		
4		elusion	254		
Re	ferences	S	257		
Re	eport o	of Committee III.1: Ultimate strength	279		
Re 1		f Committee III.1: Ultimate strength duction	279 282		
	Intro				
1	Intro	duction	282		
1	Introc Funda	duction	282 283		
1	Introd Funda 2.1 2.2	duction lamentals Design for ultimate strength	282 283 283		
1 2	Introd Funda 2.1 2.2	duction amentals Design for ultimate strength General characteristics of ultimate strength	282 283 283 283 283		
1 2	Introd Funda 2.1 2.2 Asses	duction amentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength	282 283 283 283 283 284		
1 2	Introd Funda 2.1 2.2 Asses	duction amentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods	282 283 283 283 284 284 284		
1 2	Introd Funda 2.1 2.2 Asses	duction amentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction	282 283 283 283 284 284 284		
1 2	Introd Funda 2.1 2.2 Asses	duction amentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures	282 283 283 283 284 284 284 284 285		
1 2	Introd Funda 2.1 2.2 Asses	duction amentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures	282 283 283 283 284 284 284 284 285 286		
1 2	Introd Funda 2.1 2.2 Asses 3.1	duction amentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates	282 283 283 283 284 284 284 284 285 286 288		
1 2	Introd Funda 2.1 2.2 Asses 3.1	duction lamentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods	282 283 283 283 284 284 284 284 285 286 288 288		
1 2	Introd Funda 2.1 2.2 Asses 3.1	duction lamentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction	282 283 283 283 284 284 284 284 285 286 288 288 288 288		
1 2	Introd Funda 2.1 2.2 Asses 3.1	duction lamentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method	282 283 283 283 284 284 284 284 285 286 288 288 288 288 288 289		
1 2	Introd Funda 2.1 2.2 Asses 3.1	duction lamentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method 3.2.3 Idealized structural unit method	282 283 283 283 284 284 284 284 285 286 288 288 288 288 289 290		
1 2	Introd Funda 2.1 2.2 Asses 3.1 3.2	duction lamentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method 3.2.3 Idealized structural unit method 3.2.4 Conclusion Experimental methods Reliability assessment	282 283 283 283 284 284 284 284 285 286 288 288 288 288 288 289 290 290		
1 2	Introd Funda 2.1 2.2 Asses 3.1 3.2 3.3	duction lamentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method 3.2.3 Idealized structural unit method 3.2.4 Conclusion Experimental methods Reliability assessment Rules and regulations	282 283 283 283 284 284 284 284 285 286 288 288 288 288 288 289 290 290		
1 2	Introd Funda 2.1 2.2 Asses 3.1 3.2 3.2 3.3 3.4	duction lamentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method 3.2.3 Idealized structural unit method 3.2.4 Conclusion Experimental methods Reliability assessment Rules and regulations 3.5.1 Harmonized common structural rules	282 283 283 283 284 284 284 284 285 286 288 288 288 288 289 290 290 291 292		
1 2	Introd Funda 2.1 2.2 Asses 3.1 3.2 3.2 3.3 3.4	duction lamentals Design for ultimate strength General characteristics of ultimate strength ssment procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method 3.2.3 Idealized structural unit method 3.2.4 Conclusion Experimental methods Reliability assessment Rules and regulations	282 283 283 283 284 284 284 284 285 286 288 288 288 289 290 290 290 291 292		
1 2	Introd Funda 2.1 2.2 Asses 3.1 3.2 3.2 3.3 3.4 3.5	duction lamentals Design for ultimate strength General characteristics of ultimate strength Sement procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method 3.2.3 Idealized structural unit method 3.2.4 Conclusion Experimental methods Reliability assessment Rules and regulations 3.5.1 Harmonized common structural rules 3.5.2 Updates to offshore rules and guides mate strength of various structures	282 283 283 283 284 284 284 284 285 286 288 288 288 289 290 290 290 291 292 294		
1 2 3	Introd Funda 2.1 2.2 Asses 3.1 3.2 3.2 3.3 3.4 3.5	duction lamentals Design for ultimate strength General characteristics of ultimate strength Sement procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method 3.2.3 Idealized structural unit method 3.2.4 Conclusion Experimental methods Reliability assessment Rules and regulations 3.5.1 Harmonized common structural rules 3.5.2 Updates to offshore rules and guides	282 283 283 283 284 284 284 284 285 286 288 288 288 289 290 290 290 291 292 294 294		
1 2 3	Introd Funda 2.1 2.2 Asses 3.1 3.2 3.2 3.3 3.4 3.5 Ultim	duction lamentals Design for ultimate strength General characteristics of ultimate strength Sement procedure for ultimate strength Empirical and analytical methods 3.1.1 Introduction 3.1.2 Hull structures 3.1.3 Residual strength of damage hull structures 3.1.4 Plates and stiffened plates Numerical methods 3.2.1 Introduction 3.2.2 Nonlinear FE method 3.2.3 Idealized structural unit method 3.2.4 Conclusion Experimental methods Reliability assessment Rules and regulations 3.5.1 Harmonized common structural rules 3.5.2 Updates to offshore rules and guides mate strength of various structures	282 283 283 283 284 284 284 284 285 286 288 288 288 288 289 290 290 290 291 292 294 294 298		

	4.2	Steel pl	late and stiffened plates	301
		4.2.1	Introduction	301
		4.2.2	Analytical formulations for ultimate strength of stiffened panels	302
		4.2.3	Uniaxial compression	302
		4.2.4	Multiple load effects	303
		4.2.5	Panels with openings, cut-outs or rupture damage	304
		4.2.6	Welding effects	304
		4.2.7	In service degradation	305
		4.2.8	Experimental testing	305
		4.2.9	Optimization	306
		4.2.10	Conclusions	306
	4.3	Shells		306
	4.4	Ship st	ructures	308
		4.4.1	Progressive collapse methods	309
		4.4.2	Damaged structures	310
		4.4.3	Corrosion	310
		4.4.4	Complex ship structural components and complex loading	310
		4.4.5	Reviews and applications	312
	4.5	Offshor	re structures	312
	4.6	Compo	site structures	314
		4.6.1	Failure identification and material degradation models	315
		4.6.2	Ultimate strength of composite stiffened panels and	
			box girders	316
		4.6.3	Environmental effects	317
		4.6.4	Compression after impact	317
	4.7	Alumir	num structures	318
		4.7.1	Introduction	318
		4.7.2	Weld-induced effects	318
		4.7.3	Formulation development	320
		4.7.4	Experimental investigation	320
		4.7.5	Fiber-reinforced polymer strengthened	321
		4.7.6	Sandwich panels	321
		4.7.7	Hull girder	321
		4.7.8	Summary and recommendation for future works	322
5	Benchr	nark stud	-	322
	5.1	Small b	box girder	322
		5.1.1	Introduction	322
		5.1.2	Model parameters	323
		5.1.3	Baseline calculations	324
		5.1.4	Comparison with solid element mesh	327
		5.1.5	Comparison with Smith method	328
		5.1.6	Effect of imperfection amplitude and shape	329
		5.1.7	Effect of material model parameters	331
		5.1.8	Effect of plating thickness	331
		5.1.9	Summary/conclusions	332
	5.2		nold model of hull girder	332
		5.2.1	Calculation cases	332
		5.2.2	Calculation results	335
	5.3		ary and recommendation for future works	338
6		ision and	recommendation	339
Ref	erences			340

Tabl	le of con	tents		xi
Rep	oort of	Commi	ittee III.2: Fatigue and fracture	351
1	Introdu	iction		354
2	Fatigue	e life-cyc	ele design philosophies and methodologies	354
	2.1	Fatigue	e and fracture in marine structures	354
	2.2	Prelimi	inary design	354
	2.3	Detaile	d design	354
	2.4	Fabrica	ition	355
	2.5	In-serv	ice maintenance	355
		2.5.1	Inspection techniques	355
		2.5.2	Inspection planning	355
	2.6	Fatigue	e strength	355
		2.6.1	S-N curves related to expected workmanship	355
		2.6.2	Crack propagation parameters	355
	2.7	Fractur	e strength	356
	2.8	Fatigue	e loads	356
		2.8.1	Wave loads	356
		2.8.2	Loading unloading	356
		2.8.3	Vibrations	356
	2.9	Enviror	nmental effects	356
		2.9.1	In air	357
		2.9.2	Seawater	357
		2.9.3	Other aggressive environments	357
		2.9.4	Coating and coating life	357
	2.10	Fatigue	e, fracture & failure criteria	357
		2.10.1	Failure definition	357
		2.10.2	Uncertainties	357
		2.10.3	Safety factors	358
3	Factors	influence	cing fatigue/fracture	358
	3.1	Resista	nce	358
		3.1.1	Thickness and size	358
		3.1.2	Environment (corrosion)	359
		3.1.3	Temperature	362
		3.1.4	Residual stress & constraint, mean stress	363
	3.2	Materia	als	364
		3.2.1	Metallic alloys	364
		3.2.2	Fatigue & fracture improvements through material changes,	
			surface treatment	364
	3.3	Loadin	g	365
		3.3.1	Stochastic loading (load interaction effects (sequence))	365
		3.3.2	Cycle counting – spectral, time-domain, stress ranges, means stress effect	365
		3.3.3	Complex stresses	366
		3.3.4	Recent developments in multiaxial fatigue criteria	369
	3.4	Structu	ral integrity/life cycle management	373
		3.4.1	Fabrication and repair	373
		3.4.2	Inspection & monitoring of structure and coatings	374
		3.4.3	Inspection and maintenance	376
	3.5	Compo		377
4	Fatigue		nent methods	378
	4.1	Overvi		379
	4.2		e damage models	381
		4.2.1	Stress based concepts	381

		4.2.2	Strain concepts	382
		4.2.3	Notch-intensity factor, -integral and -energy density concepts	382
		4.2.4	Confidence and reliability	383
	4.3	Fractur	e mechanics models	385
		4.3.1	Crack growth rate model	389
		4.3.2	Crack growth assessment	390
		4.3.3	Fracture mechanics based fatigue evaluation of ship structures	391
	4.4		standards & guidance	392
		4.4.1	Ship rules	392
		4.4.2	Design codes for offshore structures	394
		4.4.3	IIW recommendation	395
		4.4.4	ISO standards	395
	4.5		ance criteria	395
	4.6		rement techniques	396
		4.6.1	Crack growth and propagation	396
			Fatigue	397
			Material properties	398
		4.6.4	Fracture toughness	398
5		marking	-	399
	5.1		n statement	399
	5.2	•	ical methods	400
	5.3		ical analysis using FEM	402
	5.4	Results		403
	5.5		sion & benchmarking study conclusions	404
6		-	nclusions	404
Re	ferences			405
Re	port of	Commi	ittee IV.1: Design principles and criteria	415
1	Introd	uction		418
	1.1	Genera	l concept of sustainability oriented design	418
	1.2	Goal or	riented normative framework	418
	1.3	Procedu	ures for the impact analysis of regulations	419
2	Quant	ification of	of sustainability aspects	419
	2.1	Econor	nic aspects	419
	2.2	Human	aspects	420
	2.3	GCAF	and NCAF indicators for loss of life	420
		2.3.1	Life Quality Index	421
		2.3.2	DALY and QALY indicators	422
	2.4	Enviror	nmental aspects	423
		2.4.1	Cost of averting a tonne of oil spilt (CATS)	423
		2.4.2	CO ₂ emissions costs	427
		2.4.3	Other emissions costs	428
3	Depre	ciation ra	tes in decision making	430
	3.1	Pure tir	me preferences	431
	3.2	Precaut	tionary approach vs standard economic theory	431
	3.3		ted Assessment Models	432
	3.4		f the probability distributions	434
	3.5		f the discounting rate	434
	3.6		sion (depreciation rates)	437
4			ed to sustainability oriented design	437
	4.1		ility based design	437

	4.2	Lifequale decign	439
	4.2	Lifecycle design Lifecycle design considering future climate change	439
5		tory framework for marine structures	441
5	5.1	Development of goal based standards at IMO	444
	5.1	5.1.1 IACS harmonized common structural rules for bulk carriers and tankers	444
		5.1.2 Goal based standards/safety level approach (GBS/SLA) at IMO	446
	5.2	Regulatory actions implemented at IMO targeting environmental protection	447
	5.2	5.2.1 Energy Efficiency Design Index (EEDI)	447
		5.2.1 Energy Entered Design findex (EEDT) 5.2.2 $NO_x SO_x$ control	447
		5.2.2 Hos_{x} So _x control areas	447
		5.2.4 MARPOL Annex V prevention of pollution by garbage from ships	448
		5.2.5 IMO ship recycling (the Hong Kong convention)	448
		5.2.6 Pre-normative investigations at imo in the field of noise	110
		radiation into water	449
	5.3	Other (non IMO) regulatory actions in the field of ships	449
		5.3.1 Developments in the naval ship code	449
		5.3.2 Inland vessels	450
		5.3.3 EU directive on safety of offshore oil and gas operations	451
	5.4	Comments on the recent developments in the normative framework	451
6	Studies	s focussing on environmental impact	451
	6.1	Studies on green house gas emissions	451
	6.2	Studies on countermeasures to limit emissions	452
		6.2.1 Slow steaming	452
		6.2.2 Scale effects and propulsive improvements	452
		6.2.3 Discussions of the EEDI concept	452
		6.2.4 Studies on control of NO_x and SO_x emissions	453
		6.2.5 Emissions trading schemes	453
		6.2.6 Alternative fuels	453
7	Conclu	isions	453
Ref	erences		454
Dor	ort of	Committee IV.2: Design methods	459
1	Introdu		461
2		methodology	461
2	2.1	Developments in procedural aspects of ship design methodology	462
	2.1	Developments in "Design-for-X" and risk-based design	462
	2.2	Developments in ship form-function mapping, tradespace searches	465
	2.4	Handling uncertainty in future operating context	466
3	Design		467
5	3.1	Introduction	467
	3.2	Development of design tools	467
	3.3	Tools for lifecycle cost modeling and lifecycle assessment	469
	3.4	Links between design tools and production and operational phases	469
	3.5	Developments in integrated naval architecture packages	471
4		zation developments	472
	4.1	Introduction to Design Support Systems (DESS)	472
	4.2	Parallel processing and hardware developments	475
	4.3	Developments in structural optimization algorithms (optimization solvers– Σ)	477
	4.4	Surrogate modeling and variable fidelity approaches (surrogate solvers– Ξ)	482
		4.4.1 Surrogate modeling in design and optimization	483
		4.4.2 Surrogate modeling in risk and safety analyses	484

	4.5	Optim	ization for production (design quality modules– $\Omega^{PRODUCTION}$)	484
	4.6	Optim	ization for lifecycle costing (design quality modules– Ω^{LCC})	486
5	Classi	ification s	society software review	487
	5.1	Backg	round, motivation, and aim	487
	5.2	Tool at	nalysis	488
		5.2.1	Overall functionality	488
		5.2.2	Evaluation criteria	488
	5.3	Classif	fication societies tools details	490
		5.3.1	American Bureau of Shipping (ABS)-www.eagle.org	490
		5.3.2	Bureau Veritas (BV)-www.bureauveritas.com	491
		5.3.3	China Classification Society (CCS)-www.ccs.org.cn	491
		5.3.4	Croatian Register of Shipping (CRS)-www.crs.hr	492
		5.3.5	DNV-GL	493
		5.3.6	Korean Register of Shipping (KR)-www.krs.co.kr	495
		5.3.7	Nippon Kaiji Kyokai (ClassNK)–www.classnk.com	496
		5.3.8	Polish Register of Shipping (PRS)-www.prs.pl	497
		5.3.9	Registro Italiano Navale (RINA)-www.rina.org	498
	5.4	Conclu	usions and future challenges	498
6	Structural lifecycle management		499	
	6.1	Introdu	uction	499
	6.2	Tool d	evelopment	500
	6.3	Data ii	nterchange and standards	502
	6.4	Integra	ation with repair	503
	6.5	Integra	ation with structural health monitoring systems	504
	6.6	Summ	ary of the lifecycle structural management systems	506
7	Obsta	cles, chal	llenges, and future developments	506
8	Concl	usion		508
Acl	cnowled	lgments		509
References				

VOLUME 2 Report of Committee V.1: Accidental limit states 519 Introduction 523 1 2 Fundamentals of ALS design 524 2.1 Introduction 524 Codes and standards 2.2 525 2.3 Updates of codes and standards 527 2.4 Uncertainties in ALS in design 527 2.5 Practice for ships 527 3 Hazard identification 528 3.1 Introduction 528 3.2 Hazard identification 530 4 Safety levels in ALS design 532 4.1 Introduction 532 Safety level of offshore structures in ALS 4.2 532 4.2.1 General 532 4.2.2 Discussion of new ISO standards for offshore structures 532 4.2.3 Characterization of hazards 533 4.2.4 Accidental design situations 533 4.2.5 ALS safety levels implied in structural codes 533

	4.3	Safety level of ship structures in ALS	535
		4.3.1 General	535
		4.3.2 GBS of ship structure design	535
		4.3.3 Safety level in ULS in CSR	536
		4.3.4 Safety level in ALS in CSR-H	536
5	Asses	ssment of accidental loads	538
	5.1	Introduction	538
	5.2	Explosion load assessment	538
		5.2.1 Deterministic approach	539
		5.2.2 Probabilistic approach	539
		5.2.3 Definition of explosion loads for design	542
	5.3	Fire load assessment	542
		5.3.1 Deterministic approach	542
		5.3.2 Risk-based and probabilistic approach	543
	5.4	Load assessment for collision accidents	544
		5.4.1 Deterministic approach	545
		5.4.2 Risk-based and probabilistic approach	545
	5.5	Load assessment for dropped object accidents	546
		5.5.1 Deterministic approach	546
		5.5.2 Risk-based approach	547
6		mination of action effects	547
	6.1	Introduction	547
	6.2	Review of numerical tools	549
	6.3	Modelling geometries	550
	6.4	Modelling loads	552
		6.4.1 Ship collision	552
		6.4.2 Dropped objects	553
		6.4.3 Explosions	553
	6.5	6.4.4 Fire	554
	6.5	Material models	554
		6.5.1 Plasticity model	557
		6.5.2 Stress-strain curve	557
		6.5.3 Failure criteria	557
	6.6	Uncertainties of ALS models	560
	6.7	Probabilistic methods	560
	6.8	Appendix A	560
7	Dene	6.8.1 True stress-strain curve for Ls-Dyna	560
/		hmark study. Resistance of topside structures Subjected to fire	561
	7.1 7.2	Scope of work	561
		Strategy of benchmark study	562
	7.3	Input 7.3.1 Geometry of target structure	562 562
		7.3.2 Material data	563
			564
		7.3.3 Boundary conditions7.3.4 Loads	564
	7.4	Results	566
	/.4	7.4.1 Static analysis	566
		7.4.1 Static analysis 7.4.2 Push-down analysis	567
		7.4.3 Fire analysis	568
		7.4.4 Design of PFP	570
		7.4.5 Effects of boundary conditions	570
		Interes of counterly contractions	571

		7.4.6	Methods of controlling numerical instability for beam element model	571
		7.4.7	Effects of local heat flux	573
	7.5	Conclu	usion from the benchmark study	575
8	Refere	ences		576
9	Anney	(1. Mater	rial models for non-linear finite element analysis	579
	9.1	Introdu	action	579
	9.2	Guidel	ines and standards	580
	9.3	Materia	al model database	580
		9.3.1	Steel	580
		9.3.2	Aluminium	583
		9.3.3	Foam, isolator, rubber	584
		9.3.4	Ice	584
		9.3.5	Air	585
		9.3.6	Water	586
		9.3.7	Explosives	586
		9.3.8	Risers, umbilical or power cable	587
		9.3.9	Composites	587
		9.3.10	Concrete	588
		9.3.11	Soil	588
	9.4	Referen	nces	589
Re	port of	f Commi	ittee V.2: Natural gas storage and transportation	591
1	-	uction		593
2	Backg	round		593
3		and desi	gn	595
	3.1		containment	595
		3.1.1	Non-self supporting tanks-membrane tanks	595
		3.1.2	Independent tanks	595
		3.1.3	New development of CCS	596
	3.2	Structu	and integrity and rules	596
	3.3	Sloshir		598
		3.3.1	Global flow and sloshing-ship motion coupling, online	
			sloshing prediction	598
		3.3.2	Long-term assessment	599
		3.3.3	Experimental methods, benchmark	600
		3.3.4	Sloshing model test benchmark	600
		3.3.5	Sloshing physics, scaling ELPs, dominating physics and	
			relevant scaling laws	600
		3.3.6	Numerical methods	601
	3.4	Leakag	ze	602
	3.5	Fatigue	5	602
	3.6	Collisi	on, grounding, flooding	603
	3.7	Sloshir	ng control	605
	3.8	Fire sat	fety, temperature control of hull structures	605
4	LNG	as fuel		608
	4.1	Why L	NG as fuel	608
	4.2	LNG s	upply chain	608
5	Safety	and desi	gn special applications	610
	5.1		ng LNG, FLNG, FSRU	610
	5.2		y side or tandem mooring?	611
	5.3	Arctic	-	612

Tab	able of contents		xvii	
6 Ref	Concl	usions		612 612
P				(10
	-		nittee V.3: Materials and fabrication technology	619
1	Introd			622
2	2.1	al trends		622
	2.1		opments in the maritime markets and their impact on the trends prication and materials technologies	622
		2.1.1	Korea	624
		2.1.1	Japan	624
		2.1.2	China	624
		2.1.3	Europe	624
		2.1.5	Brazil	625
	2.2		ing research programmes on fabrication and materials	625
		2.2.1		625
		2.2.2	Japan	626
		2.2.3	-	626
		2.2.4	Europe	626
		2.2.5	Brazil	627
		2.2.6	USA	628
3	Struct	ural mat	erials	629
	3.1		lic materials	629
		3.1.1	Aluminium alloys	629
		3.1.2	Titanium	630
		3.1.3	Metal foam	630
		3.1.4	Application of metals in low temperatures	631
	3.2		netallic materials	633
		3.2.1		634
		3.2.2	1	634
		3.2.3	Influence of sea water on non-metallic materials	636
		3.2.4 3.2.5	Recycling and disposal Application of non metallic materials at low temperatures	636 637
	3.3		d materials	637
4		-	brication technology	637
т	4.1		nces in joining technology	637
		4.1.1	Welding automation and recent developments in joining technologies	637
		4.1.2		638
		4.1.3	-	638
	4.2		ations in fabrication technology	640
		4.2.1	Plate bending with line heating	640
		4.2.2	Post-treatment of welded joints and plate edges	640
		4.2.3	Hybrid structures and joints	641
	4.3	Influe	nce of production quality on strength	642
		4.3.1	Weld geometry and misalignments	642
		4.3.2	Effect residual stress and distortions	643
		4.3.3	Utilisation of high strength steel and thin plates	643
	4.4		nsion and quality control	644
5		sion prot		644
	5.1		tion rules	644
	5.2		ng and paints	645
		5.2.1	Epoxy-based coating systems	645

		5.2.2 Zinc-rich paints	645
		5.2.3 Thermal spraying and deposition	645
		5.2.4 Antifouling (AF) coatings	646
		5.2.5 Self healing coatings	646
		5.2.6 Intelligent coatings	646
		5.2.7 Ice-breaker coatings	646
	5.3	Cathodic protection	647
	5.4	Corrosion resistant steels	647
	5.5	Corrosion monitoring	648
	5.6	Non destructive testing	648
		5.6.1 Visual inspection of welds	648
		5.6.2 Inspection for delayed (hydrogen induced) cracking	648
		5.6.3 Methods of inspection	649
		5.6.4 Under film corrosion detection	649
6	Manuf	facturing simulation	649
	6.1	Discrete event simulation and production optimization	650
		6.1.1 Layout planning	650
		6.1.2 Production planning	651
		6.1.3 Outfitting and customization	651
		6.1.4 Logistic simulations	652
	6.2	Virtual and augmented reality	652
7	Weldir	ng simulation	653
	7.1	Computation welding mechanics	653
	7.2	Arc welding simulation methodologies	653
		7.2.1 Sequentially coupled thermos-mechanical models	653
		7.2.2 Thermo-mechanical staggered coupled	653
	7.3	Heat source models	654
	7.4	Material models	655
	7.5	Thermal- and mechanical boundary conditions	656
	7.6	Mesh size	657
	7.7	Computational time and cost	657
	7.8	Weld residual stress measurements	657
	7.9	Benchmark case	658
8	Conclu	usions and recommendations	659
Ref	erences		660
Rej		f Committee V.4: Offshore renewable energy	669
1	Introdu	uction	671
2	Offsho	ore renewable energy resources	671
	2.1	Offshore wind energy resources	671
		2.1.1 Resource assessment	672
	2.2	Wave energy resources	673
	2.3	Tidal and ocean current energy resources	674
		2.3.1 Physical resource assessment	674
		2.3.2 Numerical resource modelling	674
3	Offsho	ore wind turbines	675
	3.1	Recent industry and research development	675
	3.2	Numerical modelling and analysis	678
		3.2.1 Numerical tools – state-of-the-art	678
		3.2.2 Load and response analysis of bottom-fixed wind turbines	679
		3.2.3 Load and response analysis of floating wind turbines	681

	3.3	Physical testing	687
	5.5	3.3.1 Laboratory testing	687
		3.3.2 Field testing	689
	3.4	Transportation, installation, operation and maintenance	689
		3.4.1 Current industry and research development	690
		3.4.2 Numerical simulations of marine operations	691
		3.4.3 Guidelines on marine operations for offshore wind turbine	
		transportation, installation, operation and maintenance	692
	3.5	Rules and standards	692
4	Wave	energy converters	693
	4.1	Numerical modelling and analysis	695
		4.1.1 Load and motion response analysis	695
		4.1.2 Mooring analysis	698
		4.1.3 Power take-off analysis	699
	4.2	Physical testing	700
		4.2.1 Laboratory testing and validation of numerical tools	701
		4.2.2 Field testing	701
	4.3	Rules and standards	702
5	Tidal	and ocean current turbines	703
	5.1	Development, modelling and testing of tidal current energy converters	703
		5.1.1 Device development	703
		5.1.2 Numerical modelling and experimental testing	703
	5.2	Environmental impact	704
		5.2.1 Marine planning	704
	5.3	Economic feasibility	704
6		pined use of ocean space	705
7		lusions and recommendations for future work	707
Rei	erences	3	709
Re	port o	f Committee V.5: Naval vessel design	723
1		luction	726
2		class rule development/progress	726
	2.1	Introduction	726
	2.2	Military structural requirements	727
	2.3	Military operational safety loads	728
	2.4	Military performance loads	729
	2.5	Concluding remarks	729
3	Milita	ary loads	730
	3.1	Underwater weapon effects	730
		3.1.1 Primary shock wave	730
		3.1.2 Shock wave reflections and cavitation	730
		3.1.3 Bubble dynamics and jetting	731
		3.1.4 Numerical modelling	731
	3.2	Above water weapons effects	731
		3.2.1 External blast	732
		3.2.2 Internal blast	732
		3.2.3 Bullets and fragments	733
	3.3	Maritime improvised explosive devices	733
	3.4	Concluding remarks	733
4		service life management	733
	4.1	Introduction	733

	4.2	Ship service life in context	734
		4.2.1 Australian LPA class	734
		4.2.2 Australian Adelaide class FFG-07	734
		4.2.3 ANZAC class	735
	4.3	Determining the remaining life of a warship	735
	4.4	Naval structural monitoring programs	737
	4.5	Consequence of increasing displacement	738
	4.6	Options for enhancing fatigue life of warships	738
5	Naval	l specific structure design	739
	5.1	Structural uniqueness of naval ships	739
	5.2	Naval integrated permanent structures	739
		5.2.1 Flight decks (vertical)	739
		5.2.2 Stern ramps (launch and recovery systems)	740
		5.2.3 Blast resistant structures	741
	5.3	Naval modular flexible structures	742
		5.3.1 Mission bays	742
		5.3.2 Weapon modules	743
		5.3.3 Advanced enclosed masts/sensor (enclosed aperture stations)	743
	5.4	Conclusion	744
6		l mast design	744
	6.1	Introduction	744
	6.2	Types of naval masts	745
	6.3	Materials (composite vs. steel vs. aluminum)	746
	6.4	Loads	747
		6.4.1 Weight of equipment	747
		6.4.2 Environmental loadings (includes wind and seaway loads)	747
		6.4.3 Thermal	747
		6.4.4 Shock and blast	747
		6.4.5 Load combinations	747
	6.5	Vibration and resonance	748
	6.6	Structural analysis and design	748
	6.7	Other considerations	749
	6.8	Classification society rules for mast design	749
	6.9	Conclusions	749
7		ressive collapse analysis and residual strength assessment	750
	7.1	Introduction	750
	7.2	Progressive collapse method overview	750
	7.3	Development of the progressive collapse method	751
	7.4	Residual strength assessment by progressive collapse method	751
	7.5	Use of FEA for progressive collapse assessment	752
	7.6	Progressive collapse analysis within classification society rules	752
	7.7	Discussion and conclusions	753
8	High	speed naval craft	754
	8.1	Naval applications	754
	8.2	Defining a high speed craft	755
		8.2.1 Principles	755
		8.2.2 Hull form	756
		8.2.3 Standards and regulations	756
	8.3	Defining operational limitations	757
		8.3.1 Operational profile	757
		8.3.2 Operational envelope	757

Table of contents

	8.4	Accelerations effects	758
		8.4.1 Slamming	758
		8.4.2 Human factors	758
		8.4.3 Fatigue	759
	8.5	Material technologies	759
		8.5.1 Steel	759
		8.5.2 Aluminium	760
		8.5.3 Fibre reinforced plastics (FRP)	760
	8.6	Unmanned naval high speed craft	760
	8.7	Classification society rules	760
	8.8	Conclusion	761
9		hmark studies	761
	9.1	Whipping response of ship	761
		9.1.1 Introduction	761
		9.1.2 UNDEX bubble phenomena	762
10	р.	9.1.3 Experimental investigations	763
10		ussions and conclusions	764
Ret	ferences	5	766
Re	port o	f Committee V.6: Arctic technology	769
1	Intro	luction	771
	1.1	Limitations	772
2	Prese	nt design methods	772
	2.1	Ships	772
		2.1.1 Rules	773
		2.1.2 First principles	776
	2.2	Offshore structures	780
		2.2.1 Rules	783
		2.2.2 First principles	784
	2.3	Validation methods	788
3		1: Ship transportation in arctic waters-the NSR	790
4		2: Floating offshore structures in arctic waters	793
5		e perspectives and challenges	795
	5.1	Numerical simulations	797
_	5.2	Ice induced fatigue	799
6		nary and recommendations	801
		dgments	802
Ret	ferences	5	802
Re	port o	f Committee V.6: Arctic technology annex	807
1	Brief	offshore structures code summaries	809
2	Full s	cale ice load measurement campaigns	813
3	Refer	ences	816
Re	nort o	f Committee V.7: Structural longevity	817
1	-	luction	820
1	1.1	Background & mandate	820
	1.2	Relationship with other ISSC committees	820
2		ycle assessment & management for structural longevity	821
-	2.1	Introduction	821
	2.2	The need for lifecycle assessment and management	821
	2.3	Conclusions	823

xxi

3	Curre	nt practice	e	823
	3.1	Introdu	action	823
	3.2	The rol	le of regulators and classification societies	823
	3.3	Classif	ication rules and guidance	824
	3.4	Comm	ercial shipping vessels	825
		3.4.1	International trading vessels	825
		3.4.2	High-speed craft (HSC)	826
		3.4.3	Vessels operating in inland waterways	826
	3.5	Offsho	re structures	826
		3.5.1	Offshore drilling units	826
		3.5.2	Floating production storage and offloading (FPSO) units	827
		3.5.3	Fixed production platforms	827
	3.6	Naval v	vessels	827
	3.7	Conclu	isions	828
4	Predi	ction of lo		828
	4.1	Introdu		828
	4.2	Predict	tion of longevity of merchant ships	828
		4.2.1	Prediction of corrosion	829
		4.2.2	Fatigue strength prediction	829
		4.2.3	Buckling prediction	830
	4.3	Predict	tion of longevity of fixed offshore structures	830
	4.4	Conclu	isions	830
5	Preve	ntion & re	epair of structural failures	831
	5.1	Introdu	action	831
	5.2	Preven	tion of failure – design stage	831
		5.2.1	Corrosion protection	831
		5.2.2	Material selection	832
		5.2.3	Structural design	832
	5.3	Preven	tion of failure – operation	833
		5.3.1	Maintenance & inspection	833
		5.3.2	Repair and rehabilitation	834
	5.4	Conclu	usions and recommendations	836
6	Inspe	ction meth	hods & techniques	836
	6.1	Introdu		836
	6.2	Inspect	tion execution	837
	6.3	Inspect	tion techniques	837
	6.4	Limitat	tions	838
	6.5	Conclu	usions and recommendations	839
7	Sensi	ng techno	logies	839
	7.1	Introdu	action	839
	7.2	Passive	e systems	840
		7.2.1	Strain	840
		7.2.2	Acoustic emission	840
		7.2.3	Vibrations	841
		7.2.4	Crack	841
		7.2.5	Corrosion	841
		7.2.6	Acceleration	841
		7.2.7	Metocean information	842
	7.3	Active	system	842
		7.3.1	Impedance-based methods	842
		7.3.2	Lamb wave-propagation methods	843

	7.4	Data acquisition and processing	844
	7.5	Sensor network, wired and wireless	844
	7.6	Maturity of structural hull monitoring systems	844
8	Metho	dologies for using inspection & sensed data	845
	8.1	Introduction	845
	8.2	Operational advice	846
		8.2.1 Identifying loading to stay within safe operating envelope	846
		8.2.2 Quantifying operational loading and changes	848
	8.3	Lifecycle management advice	848
		8.3.1 Condition based maintenance (CBM)	850
		8.3.2 Reliability centered maintenance	850
	0.4	8.3.3 Reliability based inspections	850
	8.4	Design update based on lessons learned from analysis of failures	851
	8.5	Discussion	851
9	8.6	Conclusions	851 852
9	9.1	ne extension, comparison outside & within the maritime industry Introduction	852
	9.1 9.2	Lifetime extension of existing structures	852
	9.2 9.3	Other industries	854
	9.3 9.4	Differences in approaches for ships, offshore structures, and other	0.04
	7.4	marine structures (ranging from navy to renewable energies)	855
	9.5	Conclusions	855
10		isions & recommendations	856
10	10.1	Conclusions	856
	10.2	Recommendations	856
Ref	erences		857
Rej	port of	Committee V.8: Risers and pipelines	865
1	Introdu	action	867
2	New d	esign concepts	867
	2.1	Latest design practice of flexible risers	867
		2.1.1 Present application envelope	867
		2.1.2 Deep water	
		2.1.2 Deep water	868
		2.1.3 Shallow water	868 868
		2.1.3 Shallow water2.1.4 Singing risers	868 868
		2.1.3 Shallow water2.1.4 Singing risers2.1.5 Hybrid towers	868 868 869
	2.2	2.1.3 Shallow water2.1.4 Singing risers2.1.5 Hybrid towersLatest design practice of pipeline	868 868 869 870
3	Dynan	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review 	868 868 869 870 871
3		 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 	868 868 869 870 871 871
3	Dynan	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 	868 868 869 870 871 871 871 871
3	Dynan 3.1	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV 	868 868 869 870 871 871 871 871 873
3	Dynan	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 	868 868 869 870 871 871 871 871 873 873
3	Dynan 3.1	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 	868 869 870 871 871 871 871 873 878 878
	Dynan 3.1 3.2	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 3.2.2 Mitigation 	868 869 870 871 871 871 873 873 878 878 879
3	Dynan 3.1 3.2 Soil-pi	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 3.2.2 Mitigation peline interaction 	868 869 870 871 871 871 873 873 878 878 879 879
	Dynan 3.1 3.2 Soil-pi 4.1	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 3.2.2 Mitigation peline interaction Introduction 	868 869 870 871 871 871 873 873 878 878 879 879 879
	Dynam 3.1 3.2 Soil-pi 4.1 4.2	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 3.2.2 Mitigation peline interaction Introduction Soil behavior near pipelines 	868 869 870 871 871 871 873 878 878 878 879 879 879 879 880
	Dynan 3.1 3.2 Soil-pi 4.1 4.2 4.3	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 3.2.2 Mitigation peline interaction Introduction Soil behavior near pipelines Pipeline as-laid embedment and riser touchdown 	868 869 870 871 871 873 873 878 878 879 879 879 879 880 880 880
	Dynan 3.1 3.2 Soil-pi 4.1 4.2 4.3 4.4	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 3.2.2 Mitigation peline interaction Introduction Soil behavior near pipelines Pipeline as-laid embedment and riser touchdown Lateral pipe-soil interaction 	868 869 870 871 871 873 873 878 878 879 879 879 879 880 880 880 880
	Dynan 3.1 3.2 Soil-pi 4.1 4.2 4.3 4.4 4.5	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 3.2.2 Mitigation peline interaction Introduction Soil behavior near pipelines Pipeline as-laid embedment and riser touchdown Lateral pipe-soil interaction 	868 868 869 870 871 871 871 873 873 878 878 879 879 879 879 880 880 880 881
	Dynan 3.1 3.2 Soil-pi 4.1 4.2 4.3 4.4	 2.1.3 Shallow water 2.1.4 Singing risers 2.1.5 Hybrid towers Latest design practice of pipeline nic response investigation review Riser 3.1.1 Wave load induced dynamic response 3.1.2 VIV Free span VIV of pipeline 3.2.1 Assessment 3.2.2 Mitigation peline interaction Introduction Soil behavior near pipelines Pipeline as-laid embedment and riser touchdown Lateral pipe-soil interaction 	868 869 870 871 871 873 873 878 878 879 879 879 879 880 880 880 880

xxiii

5	Failur	e modes	of risers and pipelines	884
	5.1	Steel r	riser and pipelines	884
		5.1.1	Buckling (buckle propagation), collapse and fatigue failure	884
		5.1.2	Corrosion	885
		5.1.3	Crack	886
		5.1.4	Erosion	886
	5.2	Flexib	le pipes	886
		5.2.1	Failure modes	886
		5.2.2	Design analysis	886
		5.2.3	Monitoring	887
6	Instal	lation	6	888
	6.1	Risers		888
	6.2	Pipelin	nes	888
7	Inspection and repair			889
	7.1	Risers	-	889
	7.2 Pipelines		nes	891
		7.2.1	Maintenance	891
		7.2.2	Inspection	891
		7.2.3	Repair	892
8	Concl	usions		893
Ref	erences			895
Au	thor in	dex		903

Preface

The first volume contains the eight Technical Committee reports presented and discussed at the 19th International Ship and Offshore Structures Congress (ISSC 2015) in Cascais, Portugal, 7–10 September 2015 and the second volume contains the reports of the eight Specialist Committees. The Official discusser's reports, all floor discussions together with the replies by the committees will be published after the Congress in electronic form.

The Standing Committee of the 19th International Ship and Offshore Structures Congress comprises:

Chairman: Carlos Guedes Soares Jørgen Amdahl Yoo Sang Choo Weicheng Cui Segen Estefen Stefano Ferraris Wolfgang Fricke Masahiko Fujikubo Mirek Kaminski Merv Norwood Jeom Kee Paik Jean-Yves Pradillon Manolis Samuelides Ajit Shenoi Christina Wang Yordan Garbatov Secretary:

On behalf of the Standing Committee, we would like to thank DNV-GL, ClassNK (Nippon Kaiji Kyokai), ABS (American Bureau of Shipping), CCS (China Classification Society), KR (Korean Register), and LR (Lloyd's Register) for sponsoring ISSC 2015.

Carlos Guedes Soares Chairman Yordan Garbatov Secretary

Cascais, September, 2015